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FOURIER ANALYSISFOURIER ANALYSIS

We live in a time-domain world.  We think in the time domain and make our

observations of occurrences based on how they behave as a function of time.  There exists

another domain in which we can likewise analyze how a system or signal behaves.  This is

the frequency domain and since we do not think in the frequency domain, we have some

initial difficulty trying to visualize system and signal behavior in this domain.

Why would we want to go to the trouble to analyze a system in the frequency domain

if we can adequately analyze it in the time domain?  The answer is that it is usually

computationally easier to make the transformation into the frequency domain, perform the

analysis, and transform back into the time domain with the identical answer, than to

perform the analysis in the time domain alone.

When we transform a time domain signal into the frequency domain, we are simply

determining the frequency, or spectral, content of the signal.  There is a one-to-one

correspondence between the time domain signal and its frequency domain counterpart.

Therefore, the transformation is completely reversible, i.e., the time domain signal can be

recovered from its frequency domain representation.  We’ll begin by discussing the

representation of a time domain function in terms of other time domain functions.
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C.1C.1 REPRESENTING x(t) by OTHER TIME DOMAIN FUNCTIONSREPRESENTING x(t) by OTHER TIME DOMAIN FUNCTIONS

How do we represent one function in terms of another?  There are probably an

infinite number of ways to accomplish this, but for mathematical convenience we will let

a signal, say x(t), be represented by a linear combination of basis functions, Nn(t), where

0 # n # N.  Using this notation,

where the an values are the linear coefficients multiplied by the basis functions and N can

theoretically be infinity.  One property that is desired of a set of basis functions is finality

of coefficients.  This property allows us to determine the individual an coefficients without

needing to know any of the other coefficients.  In other words, N can be increased (for

greater accuracy for example) without changing the value of the coefficients already

determined.  In order to have finality of coefficients, the basis functions must be orthogonal

over the time interval for which our representation is to be valid.

The condition of orthogonality of basis functions requires that on the interval t2−t1,

for all k,

where N*k(t) is the complex conjugate of Nk(t) and 8k is real.
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The convenient set of orthogonal basis functions used by Fourier is the sine and

cosine.  We will presently see that they are indeed orthogonal by integrating them as in

Equation C-2.

C.2C.2 FOURIER SERIESFOURIER SERIES 

C.2.1C.2.1 Trigonometric Form of Fourier SeriesTrigonometric Form of Fourier Series  

We can represent periodic signals by a series of linear combinations of sines and

cosines.  Recall that a signal, x(t), is periodic with period T0 if

The periodic signal x(t) has a fundamental frequency (or 1st harmonic) of f0 = 1/T0.  The

second harmonic is 2f0, or in general the nth harmonic of the signal is nf0.  For example, if

x(t) has a period of 0.1 second, then f0 = 10 Hertz.  The second harmonic is then 20 Hz, etc.

If n is even, then the harmonic is even and if odd then the harmonic is odd.  A signal is

composed of its basis functions each containing the fundamental frequency and a linear

combination of its harmonics.  This combination of sinusoidal basis functions is the Fourier

series.

If a signal, x(t), satisfies the Dirichlet conditions (described in Section C.2.7) it can

be completely defined by

which is the trigonometric Fourier series for x(t).  The constants a0, an, and bn are the Fourier

coefficients and are the only values that must be calculated to determine the Fourier series.
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The angular frequency T0 is found as

To calculate these coefficients, we can integrate Equation C-4 over one period, taking

advantage of the fact that sinusoids (being orthogonal functions), and products of sinusoids,

(with two exceptions) integrate to zero over the period.  For arbitrary t0 and constants m

and n,

and

The significance of these equations is that if we integrate over one period a cosine times a

sine, or a cosine times a cosine, or a sine time a sine, the result is zero.  This is true except
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for the two cases where we are integrating either the cosine squared or the sine squared

where the equations integrate to the constant T0/2.  Note that the integral over one period

of the multiplication of one sinusoid by a sinusoid of another frequency is identically zero.

With these tools we can now solve for the Fourier coefficients.

To solve for the a0 term of Equation C-4 integrate both sides of this equation with

respect to time over one period.  Every term within the summation will integrate to zero

and we will have

Integrating the right side and dividing both sides by T0,

Notice that Equation C-12 is the integral of the original signal, x(t), over one period divided

by the period.  This is the definition for the average of x(t), which we normally call the DC

value of x(t).

If we now multiply both sides of Equation C-4 by cos (mT0t), where m can assume

any value −4 # m # 4, and integrate this new equation over one period we get
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Figure C-1.  Square wave of amplitude A and period T0.

where the summation has been eliminated since all terms where m … n are identically zero

from Equations C-6 − C-10.  Every term on the right side of Equation C-13 is zero except for

the cos2 term which, using Equation C-10, integrates to an T0/2.  The an term is then

Similarly, multiplying Equation C-4 by sin (mT0t) and integrating over one period yields

As an example, suppose that x(t) is a square wave of amplitude A and period T as

shown in Figure C-1 below.  Solve for the Fourier coefficients.

Defining t0 as −T0/2, we first solve for a0 and get
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which is the DC value of x(t).  Solving now for an with Equation C-14

Notice that an = 0 for n even.  Similarly, using Equation C-15 we find that bn = 0.

The result of Equation C-17 is of the form sin (Bx)/Bx.  (Recall that by using

L'Hospital's rule sin(0)/0 = 1).  We will see this arise over and over so give it a special

name, sinc x.  Using Equation C-17 as an example, we can manipulate it into the sinc form

as follows:

A plot of sinc(x) versus x is shown in Figure C-2 below.

Using the results of the foregoing, we see that for the square wave of the example

There are no sin(nT0t) terms because bn = 0 for all n.  We now have the spectral content

of x (t).  There is a DC term (f = 0), a term at the fundamental frequency, f0, and terms at

an
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Figure C-2.  Sinc(x) versus x.

infinite number of harmonics of the fundamental frequency.  It is interesting to note that we

started with a signal which was continuous for all time, obtained coefficients for the

frequency components, and obtained a signal which is defined at only discrete values of

frequency in the frequency domain.  

We can plot Equation C-19 to see if it is in fact a correct representation for the square

wave.  We cannot sum an infinite number of terms, but the Figure C-3 shows the resultswith

n = 1, 3, 5, 9, 51, and 1001.  You can see that after just a few terms, the summation of

cosine waves described by Equation C-19 begins converging to the square wave.

The intuitive problem with this result is that we have a square wave being

represented by a combination of cosine waves.  We think that this should not be possible,
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Figure C-3.  Fourier series synthesis of square wave.  Pictured are the series results
with n = 1, 3, 5, 9, 51, and 1001.

 and in fact is not a perfect square wave unless we add all the terms out to infinity.  Notice

that the approximation to a square wave gets better and better as we add more and more

terms to the summation.

C.2.2  Exponential form of Fourier SeriesC.2.2  Exponential form of Fourier Series 

It is often beneficial to express the Fourier series in terms of a complex exponential

rather than in terms of the sines and cosines.  We know that sines and cosines can be

expressed as complex exponentials using Euler's identity (see Section C.2.3).  The

exponential Fourier series is given by
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where 

In Equation C-19 we described the square wave of x(t) as a trigonometric Fourier

series.  Let's use Equations C-20 and C-21 to describe the same signal using an exponential

series.  From C-21 we get

Now, from C-20 we see that

Comparing Equation C-23 with C-19, we see that we now have negative frequencies when

n is negative.  The DC term is defined by n=0, so that plugging n=0 into Equation C-23 we

get A/2 just as in the trigonometric Fourier series (since sinc(0) = 1).  Because the cosine

and sine consist of both positive and negative frequencies (represented by positive and

negative exponentials in Euler’s identity), we see that by collecting the positive and negative
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terms (e.g., the fundamental frequency is represented by + and − n) Equation C-23 is

identical to Equation C-19.

C.2.3C.2.3 Euler's IdentityEuler's Identity

To help clarify the concept of negative frequencies introduced in the last section, we

will quickly review Euler's Identity.  Recall that Euler's Identity is

If we let 2 = −2, Equation C-24 becomes

since the cosine is an even function and the sine is an odd function (described below).  We

can add Equations C-24 and C-25 to get

or

Subtracting Equation C-25 from C-24 
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so that

Since the angle, 2, is equal to Tt, we see in Equations C-27 and C-29 that the cosine

and sine are indeed defined with positive and negative frequencies.  This mathematical

model of the sine and cosine justifies the use of positive and negative frequencies in

Equation C-23.

C.2.4C.2.4 Effect of symmetryEffect of symmetry  

Whenever the signal to be expanded by a Fourier series is an even function of t, that

is, x(−t) = x(t), only cosine terms (and possibly DC) are present (or, bn = 0).  This was

demonstrated in Equation C-19, where only an terms are present.  Similarly, if the signal is

an odd function of t, i.e., x(−t) = −x(t), then only sine terms will be present in the Fourier

series (an = 0).  Also, for both cases, the values of the Fourier coefficients can be obtained

by integrating over half the period and doubling the result.  If we are using the exponential

Fourier series, the coefficients are purely imaginary for odd functions and purely real for

even functions.

C.2.5C.2.5 Differentiation and Integration of Fourier seriesDifferentiation and Integration of Fourier series  

In Equation C-23 we saw that x(t) can be represented in exponential form as
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To find the derivative of x(t) with respect to time we differentiate both sides of Equation

C-30 to get

We can move the derivative operator inside the summation since it is respect to t and the

summation is over n.  The coefficient cn is unaffected by the derivative since it is a function

of n alone and not a function of t.  Differentiating term by term, Equation C-31 becomes

The effect of differentiating x(t) is to multiply the Fourier coefficients by jnT0.  This has the

consequence of emphasizing the higher frequencies (when n is higher) over the lower

frequencies.  (In other words differentiation produces a high-pass filter.)  It can be easily see

then that the integral of x(t) will be

which has the effect of de-emphasizing the higher frequencies (or a low-pass filter).
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C.2.6C.2.6 Effect of time shift of signalEffect of time shift of signal  

We already have seen that we can represent a time-domain signal as

What if we delay this signal so that x(t) becomes x(t−J)?  To find out, substitute t−J for t

in Equation C-34 to get

You can see that we get the same Fourier coefficients, cn, but they have shifted in phase by

e jnT0 J.  In other words, delaying the signal by J seconds causes a change in the phase of the

Fourier series by nT0J radians.

C.2.7C.2.7 Convergence of the Fourier seriesConvergence of the Fourier series 

We mentioned earlier that the Fourier series will converge to x(t) when certain

conditions are met.  The conditions are known as Dirichlet conditions and are met with all

real systems, which are the type that in which we have interest.  This means that any

communications signal we encounter will converge in a Fourier series.  There are three

Dirichlet conditions to be met, which are 1)  The function or signal is absolutely integrable

over its period T0 (i.e., the integral does not go to infinity), 2)  There are a finite number

of maxima and minima over the period, and 3)  There are a finite number of discontinuities

over the period.
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C.2.8C.2.8 Spectrum of a periodic signalSpectrum of a periodic signal  

We now know that we can expand a periodic signal into DC and its frequency

components using the Fourier series.  We can therefore plot the magnitude of its frequency

components to develop the spectrum of the signal.  This can be easily accomplished by

plotting cn versus f (or T) as shown in Figure C-4 from Equation C-19 for the square wave

of Figure C-1.  We see that we have values for DC, the fundamental frequency f0, and all of

its harmonics--sometimes the value of a harmonic is zero.  We only see the positive

frequencies in this figure, because it is a plot of a trigonometric series.  If it were from an

exponential series, there would also be negative frequencies whose amplitudes would be

the conjugate of the amplitudes of the positive frequencies.  Because there are discrete lines

to represent amplitudes only at discrete frequencies, this called a discrete spectrum.
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Notice that in the figure that all the magnitudes are positive.  Since the amplitudes

of the individual components of Equation C-19 do include negative values, this discrepancy

is resolved by representing the negative values in the phase (phase plot not shown).  Since

a phase change of 180 degrees is indicative of a negation, those areas of the spectrum where

the amplitude is actually negative in magnitude would have a phase of 180 degrees.

C.2.9  Average power of a periodic signalC.2.9  Average power of a periodic signal  

The average power in a periodic signal, x(t) is given by

which is just the integral over one period of the square of the signal divided by the period.

This is the normalized power developed across a one-ohm resistor.  Now that we have the

Fourier series representation of this same signal, how do we determine the average power

contained in the series?

We know that, of course, the average power is the same no matter how we represent

the signal.  Recall from Equation C-20 that

Squaring both sides

Using Equations C-36 and C-38,



17

P '
1

T0m
T0

0
x 2(t) dt '

1

T0
j
4

n'&4 m
T0

0
*cn*

2 dt ' j
4

n'&4

*cn*
2. (C-39)(C-39)

x(t) ' j
4

n'&4
cn e jnT0t

(C-40)(C-40)

This is intuitively satisfying since it tells us that all the power of the signal is contained in

the amplitude values of the spectrum of the signal.

These relationships, of the power contained in the signal x(t), being identical to the

power contained in the spectrum representation of the same signal, is known as Parseval's

theorem.  These relationships apply to power signals (as opposed to energy signals where

the average power is zero).

C.3C.3 FOURIER TRANSFORMSFOURIER TRANSFORMS  

In the last sections we have developed the Fourier series which we saw describes a

periodic signal.  With the Fourier series we are able to determine the frequency content of

a periodic signal.  We now want to develop a method to determine the frequency or spectral

content of a nonperiodic signal.  This method is the Fourier transform which we will now

derive from the Fourier series.

C.3.1C.3.1 Transform DerivationTransform Derivation

Using the exponential form of the Fourier series we know from Equation C-20 that

where
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If we have a nonperiodic signal, then the period of x(t) approaches infinity, that is,

T0 6 4.  Since T0 = 2B/T0, as T0 6 4, T0 6 dT, which causes T to become a continuous

variable (rather than discrete as it was for a periodic signal) and the quantity nT0 to

approach ndT, i.e., nT0 6 T as n 6 4.  Making these substitutions into Equation C-41 for a

nonperiodic signal we get

We can see that t is integrated out, so that the result of the integral is a function of T alone.

This integral is now a function of frequency, and since it was generated from x(t), we will

capitalize the x (to signify that it is a frequency function), and call this new function X(T),

i.e.,

Equation C-42 now becomes

Substituting Equation C-44 into C-40, we get
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Recognizing that we are now summing a continuous variable, as T0 6 dT and nT0 6 T, the

infinite summation becomes an integral, giving us

Equation C-43 is known as the Fourier integral or the Fourier transform of x(t).  The

variable t has disappeared from the equation and the transformed variable X is a function

of frequency.  Equation C-46 is the inverse Fourier transform and transforms a frequency

domain signal into its time domain counterpart.  The functions x(t) and X(T) make up a

Fourier pair which is often seen as x(t) W X(T).  By convention, the capital X is reserved for

frequency domain signals while the lower case x is used for the time domain signals.  This

is true no matter what letter is used, e.g., u(t) W U(T).  Another convention that is used is

that the Fourier transform of x(t) is ö[x(t)], that is, X(T) = ö[x(t)].  Similarly, we can

write x(t) = ö−1[X(T)].

Just as for the Fourier series, the Fourier transform will only exist if x(t) satisfies the

Dirichlet conditions.

We can define the Fourier transform in terms of frequency f, instead of angular

frequency T.  One advantage of using the f frequency is that the 2B constant goes away.

The f Fourier relationships are given by
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Figure C-5.  Square pulse of amplitude A and duration T.
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Consider the waveform shown in Figure C-5.  Here we have a single pulse of

magnitude A, centered at 0, with width T, i.e., x(t) = A rect(t/T).  This is a very important

signal in the world of communications and radar.  This is also the pulse shape of clock pulses

for the computer world.  Using Equation C-43 to find the Fourier transform of the pulse

shown in the figure 

If we make the substitution of T = 2Bf, (or compute the transform directly from Equation

C-47) we find X(f) as
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Therefore, any time you see a square wave pulse (whether periodic or non periodic), think

sinc.  Likewise, we will see (through the principle of duality) that a square pulse in the

frequency domain will require a sinc pulse in the time domain.  Using the Fourier pair

convention then

Notice that the left side of this equation is completely a function of time while the right side

is only a function of frequency.

C.3.2C.3.2 Magnitude and phase of the Fourier transformMagnitude and phase of the Fourier transform 

Just a few words about what the complex representation of a signal in the frequency

domain means.  If a signal is represented by a complex number then it has a phase other

than zero.  If its representation is purely real, then its phase is zero, and if its representation

is purely imaginary, then its phase is ± 90E.

Take the Fourier transform X(T) which is, in general, a complex variable.  In polar

form this function consists of a magnitude, depicted as |X(T)|, and phase N represented by

ejN = ej arctan[Im(X(T)) / Re(X(T))], where Im is the imaginary part and Re is the real part of X(T).

Therefore, 
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4

0
e &ate &jTt dt ' m

4

0
e &(a%jT)t dt

/00
'

&1
a % jT

e &(a % jT)t
4

0

'
1

a % jT
.

(C-53)(C-53)

X(T) '
1

a 2 % T2
e
&jtan&1 T

a . (C-54)(C-54)

From this representation you can see that if the real part is zero, the arctangent of infinity

is 90 degrees as we expect, while if the imaginary part is zero, then the phase is zero.

As an example of a function which can be represented by Equation C-51 consider the

negative exponential function

where u(t) is the unit step.  We can find the Fourier transform as

Recall that the magnitude of a complex number is the square root of that number multiplied

by its conjugate.  The complex part of Equation C-53 multiplied by its conjugate is found as

(a + jT)(a − jT) which equals a2 + T2.  The magnitude of X(T) is the square root of this or

|X(T)| = 1/(a2 + T2)½.  The phase of X(T) will be negative (since the complex number is

in the denominator) and will be -tan-1[T/a].  We can see then that X(T) of Equation C-53

can equivalently be represented as
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ö[a1x1(t) % a2x2(t)] ' a1X1(T) % a2X2(T). (C-55)(C-55)

This transformation is simply converting from the rectangular representation to the polar

representation.  If your calculator performs this function, you can easily compute the

magnitude and phase of any complex signal.

C.3.3C.3.3 Properties of the Fourier TransformProperties of the Fourier Transform  

It is often undesirable or very difficult to perform the transformation of a signal from

the time domain to the frequency domain or from the frequency domain to the time domain.

We can often use properties of the F.T. which allow us to recognize what the transform will

be without having to perform the mathematical transformation.  Some of these properties

are described below.

C.3.3.1 Linearity  

The first property we want to look at is linearity.  If the transform is linear, and it is,

then superposition applies.  The implication is that if x1(t) W X1(T) and  x2(t) W X2(T), then

C.3.3.2 Duality 

Another property which is a powerful tool is that of duality.  The essence of duality

is that if we know a transform, e.g., a Fourier transform of x(t), then if we encounter a

function which is identical in form to x(t) but is in the frequency domain, then duality tells

us what the inverse transform of this frequency signal will be.  In mathematical terms the

duality property states simply that if x(t) W X(T) then
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X(t) W 2B x(&T) or

X(t) W x(&f).
(C-56)(C-56)

rect(t) W sinc(f). (C-57)(C-57)

X(t) ' sinc(t), (C-58)(C-58)

sinc(t) W rect(&f). (C-59)(C-59)

sinc(t) W rect(f). (C-60)(C-60)

For example, if x(t) = rect(t), then X(f) = sinc(f) as we found in Equation C-49.

Now, if x(t) = sinc(t), what is X(f)?  It is very difficult to perform the Fourier integration

on the sinc function.  How then do we determine the transform?  We find it is easier to use

duality.  We have as a Fourier pair

We recognize sinc(t) as the dual of X(f) (i.e., the right side of the equation).  We let 

where we use X(t) (capital X) to signify that we are applying the dual.  From Equation C-56

we substitute −f for t in Equation C-57, to give

Examination of the rect function shows that it is an even function so that
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x )(t) W jTX(T), and

mx(t)dt W 1
jT

X(T) % BX(0)*(T).
(C-61)(C-61)

x(at) W 1
|a|

X T
a

. (C-62)(C-62)

x(t & J) W e &jTJX(T). (C-63)(C-63)

C.3.3.3 Differentiation and Integration

We saw in Fourier series that differentiation and integration of x(t) in the time

domain implied multiplication or division by a complex constant in the frequency domain.

The same rules follow for the transform and if x(t) W X(T) then

Notice that the constant of integration appears as BX(0)*(T).

C.3.3.4 Time and Frequency Scaling

The next property is that of scaling, both time and frequency.  Suppose you know the

transform of x(t), but now you have x(3t).  What is the transform?  The property is (which

can be used whether the signal has been time scaled or frequency scaled), if x(t) W X(T)

then

C.3.3.5 Time Shifting  

We saw in the Fourier series (Equation C-35) that if we delayed x(t) to x(t−J), time

shifting, that the phase of the frequency domain representation changed in direct proportion

to J.  The same is true for the F.T.  If x(t) W X(T) then
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X(T & T0) W e jT0t x(t). (C-64)(C-64)

e jT0t x(t) W X(T & T0), (C-65)(C-65)

cos(T0t) '
1

2
e jT0t

% e &jT0t , (C-66)(C-66)

cos(T0t) x(t) W 1

2
X(T & T0) % X(T % T0) . (C-67)(C-67)

C.3.3.6 Frequency Shifting

Now for some frequency domain properties.  We had time shifting now let's see what

happens with frequency shifting.  If  X(T) W x(t) then

Another name for frequency shifting is modulation.  We see that if

and

then

Thus, modulation of a cosine wave by a time function x(t) results in a new function having

a spectrum consisting of half the original spectrum of x(t) translated along the positive

frequency axis by an amount T0 and the other half translated along the negative frequency

axis by an amount −T0.  



27

y(t) ' m
4

&4
x(J) h(t&J) dJ. (C-68)(C-68)

Y(T) ' m
4

&4
y(t) e &jTt dt ' m

4

&4 m
4

&4
x(J) h(t&J) dJ e &jTt dt. (C-69)(C-69)

Y(T) ' m
4

&4
x(J) m

4

&4
h(t&J) e &jTtdt dJ. (C-70)(C-70)

ö[h(t&J)] ' e !jTJ H(T). (C-71)(C-71)

Y(T) ' m
4

&4
x(J) e !jTJH(T) dJ ' H(T) m

4

&4
x(J) e !jTJ dJ, (C-72)(C-72)

C.3.3.7 Convolution

Convolution is the integral which allows us to find the response of a system, y(t), to

an arbitrary input, x(t), if we know the unit impulse response, h(t) of the system.

Mathematically, we can find the output as

Let's find the Fourier transform of y(t), given by

Interchanging the order of integration and integrating first with respect to t

Evaluating the inner integral first we recognize it as the F.T. of h(t−J).  From Equation C-63

this integral is found as

Replacing the inner integral with Equation C-71, Equation C-70 becomes

where we have removed H(T) from within the integral as it is a constant with respect to the

integration.  (The function H(T) is the transfer function of the system and is the Fourier
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Y(T) ' H(T) X(T). (C-73)(C-73)

Y(f) ' H(f) X(f). (C-74)(C-74)

ö &1 [*(f & f0)] ' m
4

&4
[*(f & f0)] e j2Bft df. (C-75)(C-75)

transform of the impulse response h(t).)  The remaining integral is just the F.T. of x(t), (i.e.,

X(T)) with J replacing t for the integration so that

Using the same procedure in the cyclic frequency domain we find

From this discovery we conclude that convolution in the time domain is equivalent

to multiplication is the frequency domain.  First we find the Fourier transforms of x(t) and

h(t), obtaining X(T) and H(T), and multiply them together.  Knowing Y(T) we can find y(t)

by finding the inverse Fourier transform of Y(T).  It is this powerful property of the

frequency domain that makes it so useful.

C.4C.4 FOURIER TRANSFORMS OF PERIODIC FUNCTIONS (POWER SIGNALS)FOURIER TRANSFORMS OF PERIODIC FUNCTIONS (POWER SIGNALS)

Now that we have this powerful tool of the Fourier transform whereby we can leave

the time domain and enter the frequency domain for nonperiodic signals (energy signals),

how to we expand this concept to include the periodic signals?  The answer can be found

in the inverse F.T. of the delta function.  Let's find the inverse F.T. of a frequency-shifted

delta function, *(f − f0).  Going back to the defining equation

Using the sifting property of the delta function the integral is simply exp(j2Bf0t), so that we

get a new pair 
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e j2Bf0 t W *(f & f0). (C-76)(C-76)

cos(2Bf0t) '
1

2
e j2Bf0 t

% e &j2Bf0 t W 1

2
[*(f & f0) % (f % f0)] (C-77)(C-77)

sin(2Bf0t) '
1

2j
e j2Bf0 t

& e &j2Bf0 t W 1

2j
*(f & f0) & (f % f0) . (C-78)(C-78)

Because we can describe sines and cosines in terms of exponentials, we now have the F.T.

for these sinusoids.  It is easily seen that

and

Extending this concept, since using Fourier techniques we can describe any periodic

function as a sum of sines and cosines, we can now transform any periodic function which

conforms to the Dirichlet conditions.

C.5  C.5  ENERGY CONTENT OF A SIGNALENERGY CONTENT OF A SIGNAL

We saw that the power contained in a periodic signal is the same whether we

determine the power from the time domain representation, or the frequency content

representation of the Fourier series.  Similarly, the energy of a nonperiodic signal must be

the same whether we derive it from the time domain or from the frequency domain of the

signal.

Recall that the energy E of a signal x(t) is the integral of x2(t) over all time.  Since

x2(t) = x(t)x(t), we simply let the second x(t) be represented by the inverse F.T. of X(T)

and perform the integration, i.e.,
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*X(f)*2 df. (C-81)(C-81)

Rearranging the order of integration

where X*(f) is the complex conjugate of X(f).  Therefore, we find that the energy in the

nonperiodic signal as

This is the generalized form of Parseval's theorem for nonperiodic signals.


